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ABSTRACT
Multimedia-based recommendation (MMRec) utilizes multimodal
content (images, textual descriptions, etc.) as auxiliary information
on historical interactions to determine user preferences. Most MM-
Rec approaches predict user interests by exploiting a large amount
of multimodal contents of user-interacted items, ignoring the po-
tential effect of multimodal content of user-uninteracted items. As a
matter of fact, there is a small portion of user preference-irrelevant
features in the multimodal content of user-interacted items, which
may be a kind of spurious correlation with user preferences, thereby
degrading the recommendation performance. In this work, we ar-
gue that the multimodal content of user-uninteracted items can
be further exploited to identify and eliminate the user preference-
irrelevant portion inside user-interacted multimodal content, for
example by counterfactual inference of causal theory. Going be-
yond multimodal user preference modeling only using interacted
items, we propose a novel model called Multimodal Counterfac-
tual Learning Network (MCLN), in which user-uninteracted items’
multimodal content is additionally exploited to further purify the
representation of user preference-relevant multimodal content that
better matches the user’s interests, yielding state-of-the-art per-
formance. Extensive experiments are conducted to validate the
effectiveness and rationality of MCLN. We release the complete
codes of MCLN at https://github.com/hfutmars/MCLN.
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1 INTRODUCTION
Multimedia-based recommendation (MMRec) has been extensively
deployed in various online services (e.g., e-commerce [21, 24], so-
cial media [49], micro-video-sharing platforms [3, 45], online video
platforms [34]) to alleviate information overload. Rich multime-
dia content (visual images, textual descriptions, etc.) contributes
extra multimodal information for historical interactions, thereby
strengthening the quality of representation learning. These multi-
modal features of items can represent the correlation among items
in multiple dimensions. They provide multimodal fine-grained pref-
erences for users to more comprehensively describe their interests.
As a kind of content-rich method [23, 37, 47], MMRec approaches
alleviate data sparsity and cold-start problems that are ubiquitous
in recommender systems.

Current MMRec frameworks typically consist of two compo-
nents: multimodal feature extraction and user preference modeling.
The former extracts multimodal features from the multimedia con-
tent of items by utilizing pre-trained deep networks. The latter
incorporates these multimodal features into the recommendation
framework (e.g., collaborative filtering [32]) to accomplish user
preference modeling together with historical interaction. Early
MMRec works like VBPR [11] employ pre-trained convolutional
neural networks to extract visual features of the items and inte-
grate them into the item embeddings. Subsequent efforts such as
CKE [51] incorporate multimodal information (visual images and
textual descriptions) and knowledge graphs into the representation
learning process. MMGCN [46] uses Graph Convolution Networks
(GCNs) to perform embedding propagation on parallel user-item
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interaction graphs with different modality data, thus distilling user
preference cues hidden in different modalities. Recent efforts like
DMRL [19] incorporate a disentangled representation technique
into MMRec, considering the contributions of different modality
features on each disentangled factor in user preference modeling.

Despite existing MMRec models using a large number of multi-
modal contents of user-interacted items to predict user interest and
having achieved remarkable performance, they ignore the potential
effect of the multimodal content of user-uninteracted items on rep-
resentation learning. As a matter of fact, even for a user-interacted
item, there is still a small portion ofmultimodal content that the user
dislikes or less likes, which we call user preference-irrelevant multi-
modal features. Also, we call these multimodal contents that really
attract users as preference-relevant multimodal features. Figure 1
shows the motivation of our MCLN, in which the user-uninteracted
item’s multimodal content together with the user-interacted item is
leveraged to purify the representation of user preference-relevant
multimodal features. In Figure 1, Item 𝑖 , which has been interacted
with by user, is a cotton dress, and the user-uninteracted item 𝑖∗

is a silk dress. They are closely similar in style (i.e., dress, female
model, and bag) except that their fabrics are different, the former
being cotton and the latter being silk. In addition, there are other
two items (Item 1 and Item 2) to be recommended to the given user.
Item 1 is a yellow cotton dress that the user really likes (probably
because its fabric is cotton), while Item 2 is a wathet chiffon dress
and is more similar in appearance and style to the user-interacted
item 𝑖 , which may be less liked by the user. Thus, traditional models
find it difficult to distinguish between the items, and scores for both
are close, even the score of Item 2 is slightly higher than Item 1
(wrong prediction), as shown in the dashed box (a).

User Interacted  item i

Uninteracted item i*

A silk dress ...

Model

❌
Causal 

Difference
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Prediction Multimodal 

Counterfactual Learning
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Figure 1: A motivating example of MCLN. Item 1 is the item
that the user really likes. The dashed box (a) indicates that the
traditional models produce a wrong prediction for the user,
wherein the score of Item 1 is lower than Item 2. The solid box
(b) shows how the model with multimodal counterfactual
learning produces a right prediction for the user, wherein
the score of Item 1 is higher than Item 2.

Subsequently, we perform a causal difference calculation using a
user-interacted item 𝑖 (cotton dress) and a user-uninteracted item 𝑖∗

(silk dress) to distinguish the difference in the multimodal content
of the recommended items (Item 1 and Item 2), such that the model
can capture the difference between the words "cotton" and "chiffon"
as well as the visual difference (chiffon has a pattern and cotton

is a flatter fabric), thereby discovering potential user preferences
(the user prefers cotton items). Thus, the model with multimodal
counterfactual learning can distinguish Item 1 from Item 2, and the
scores of both differ significantly: Item 1 has a higher score than
Item 2 (right prediction), as shown in the solid box (b). Therefore,
we argue that the multimodal content of user-uninteracted items
can be employed to alleviate the side effect of preference-irrelevant
parts in the multimodal content of user-interacted items.

Toward this end, we develop a novel MMRec model namedMul-
timodal Counterfactual Learning Network (MCLN), in which
a counterfactual learning module is designed to learn the causal dif-
ference of user preference distribution (abbr. as causal difference) on
multimodal contents of user-interacted and user-uninteracted items.
This causal difference value between two preference distributions
leads the MCLN model to exploit the multimodal content repre-
sentations of user-uninteracted items to identify and eliminate the
preference-irrelevant representations in the multimodal content of
user-interacted items, which may have a spurious correlation with
user preferences. This can further purify the representation of user
preference-relevant multimodal content that better matches the
user’s interests, thus achieving satisfactory recommendation qual-
ity. Experiments performed on three public datasets demonstrate
that MCLN yields state-of-the-art performance. Further ablation
studies validate the effectiveness of each component in MCLN.

To summarize, the main contributions of this work are threefold:

• We highlight that the multimodal contents of user-uninteracted
items are helpful for identifying and removing the preference-
irrelevant part of the multimodal content of user-interacted items,
further purifying the representation of user preference on multi-
modal content.

• Inspired by causal theory, we devise a novel MMRec model,
MCLN, which leverages the difference values between the pref-
erence distributions on multimodal content of user-interacted
items and user-uninteracted items under the guidance of causal
difference to mitigate the side effect of preference-irrelevant parts
in the multimodal content of user-interacted items.

• Through extensive experiments on three public datasets, we
demonstrate the effectiveness and rationality of MCLN.

2 RELATEDWORK
GCN-based Recommendation. In recent years, GCN [16, 50] has
received increasing attention from many research fields [9, 39] and
has achieved remarkable success. A common paradigm for GCN
is to first adopt a graph convolution layer to aggregate informa-
tion from neighbors and then iteratively perform this process to
capture high-order collaborative signals. Early recommendation
efforts such as GC-MC [2] utilize nonlinear GCN to aggregate one-
order neighbor information into the embeddings of the target nodes.
PinSage [50] exploits deeper GCN structures to obtain high-order
interactions. NGCF [43] effectively combines GCN and Matrix Fac-
torization (MF) [18] and obtains the final embedding of the nodes by
concatenating the embedding learned from all graph convolution
layers. Several recent works [4, 12] have contended that weight
transformation matrices and nonlinear activation functions in GCN
introduce more redundant parameters, which can lead to overfit-
ting. LightGCN [12] captures high-order collaborative signals using
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a concise linear GCN that removes weight transformation matri-
ces and nonlinear activation functions. JMPGCF [22] integrates
multi-grained popularity features into embedding generation via
constructing a popularity-aware graph Laplacian norm for model-
ing user sensitivity to popularity.
Multimedia-based Recommendation. Multimedia-based recom-
mendation (MMRec) can be regarded as a content-rich recommen-
dation method. It is centered on utilizing the multimodal content
of items to assist with the recommendation task. Early works like
VBPR [11] use a convolution neural network pre-trained on Im-
ageNet [5] to extract deep features of items and integrate them
into the embedding of items. Subsequently, some researchers began
to explore user preferences across modalities. For instance, CKE
[51] incorporates visual features, textual features, and knowledge
graphs into the learning process of embeddings. MMGCN [46] is a
MMRec work that uses GCN to perform embedding propagation
on interaction graphs with different modality data, thereby captur-
ing user preferences for different modalities. MGAT [36] weights
information propagation in multimodal interaction graphs by con-
structing attention networks [10, 38], thus modeling fine-grained
multimodal user preferences. HUIGN [45] investigates user intent
learning in MMRec and learns multi-level user intents from the
co-interacted patterns of items to optimize user and item represen-
tations. The latest efforts like DMRL [19] incorporate a disentangled
representation technique into MMRec that considers the contribu-
tions of different modality features on each disentangled factor
in user preference modeling. However, these methods depend on
the multimodal content of user-interacted items, being unaware of
the potential usage of the multimodal content of user-uninteracted
items. Thus, we develop MCLN to explore an efficient approach
to utilize the potential effect of the multimodal content of user-
uninteracted items on representation learning.
Causality-based Recommendation. Recently, causal inference
has been extensively employed in many machine-learning tasks,
spanning from computer vision [28, 40], and natural language pro-
cessing [7] to recommendation systems [29, 52]. In recommendation
systems, several related efforts focus on eliminating popularity bias.
For example, MACR [44] utilizes causal graphs to analyze the causal
effect of item popularity. PD [52] analyzes causal relations from
the confounders’ view and alleviates popularity bias during model
training via causal intervention. In addition, DecRS [41] explains
the cause of bias amplification from the causal perspective and em-
ploys an approximation of "backdoor adjustment" to mitigate the
bias amplification problem. CausalRec [29] designs a causal graph
to analyze the visual bias problem and eliminates the bad effect
of visual feature via counterfactual inference. CR [42] studies the
clickbait issue through a causal graph, where the exposure features
of items are the source of bias. Recent works like InvRL [6] attempt
to alleviate the spurious correlations from the multimedia content.
It applies heterogeneous environments to denote spurious correla-
tions and learns invariant representations across the environments
to mitigate their effect. Distinct from these approaches, our MCLN
considers the potential effect of the multimodal content of user-
uninteracted items on representation learning when employing
intervention and counterfactual inference. This can alleviate the
side effect of spurious correlations (user preference-irrelevant parts)
in the multimodal content representations of user-interacted items.

3 METHODOLOGY
In this section, we detail the overall framework of the proposed
MCLN, as illustrated in Figure 2, which can be divided into fivemain
parts: (1) basic recommendation framework, which incorporates the
high-order collaborative signals of each node into its embedding
representation; (2) sample pair selection and feature embedding,
which select sample pairs (user-interacted and user-uninteracted
items) from multimedia datasets and encode the feature embed-
dings of the sample pairs; (3) causal difference learning, which
learns the preference distributions on multimodal content of the
user-interacted and user-uninteracted items and uses the causal
differences between them to purify the representations of user
preference-relevant multimodal content; (4) multimodal fusion and
score prediction, which fuse intra- and inter-modality feature em-
beddings of user-interacted items and calculate prediction scores
for all user-item pairs; and (5) model optimization, which constructs
objective losses to optimize the representation of all users and items.

3.1 Basic Recommendation Framework
First, we convert the implicit interaction data into a user-item
interaction graph G = {(𝑢, 𝑟𝑢𝑖 , 𝑖) |𝑢 ∈ U, 𝑖 ∈ I}, where U and I
represent the sets of users and items, respectively, and 𝑟𝑢𝑖 = 1
indicates that there exists interaction between user u and item i;
otherwise, 𝑟𝑢𝑖 = 0. We initialize all nodes in G by mapping the IDs
of all nodes to the dense vector representations as follows:

E =

{
𝑒
(0)
𝑢1 , . . . , 𝑒

(0)
𝑢 |U| , 𝑒

(0)
𝑖1
, . . . , 𝑒

(0)
𝑖 |I |

}
, (1)

where E ∈ R( |U |+|I | )×𝑑 , |U| is the number of users, |I | is the
number of items, and d is the embedding dimension.

Then, based on prior work [4, 12], we devise a linear GCN to
perform embedding propagation on the interaction graph G. We
assume that the current graph convolution layer is 𝑙 . The embedding
updates of the user 𝑢1 and item 𝑖1 are obtained by aggregating the
embeddings of their neighbor nodes in the (𝑙−1)-th layer as follows:

𝑒
(𝑙 )
𝑢1 =

∑︁
𝑖∈𝑁𝑢1∪𝑢1

1��𝑁𝑢1 ��0.5 |𝑁𝑖 |0.5−𝛼 · 𝑒 (𝑙−1)
𝑖

, (2)

𝑒
(𝑙 )
𝑖1

=
∑︁

𝑢∈𝑁𝑖1∪𝑖1

1��𝑁𝑖1 ��0.5 |𝑁𝑢 |0.5−𝛼 · 𝑒 (𝑙−1)𝑢 , (3)

where 𝑁𝑢 and 𝑁𝑖 stand for the neighbor nodes of user 𝑢 and item 𝑖

in G, |𝑁𝑢 | and |𝑁𝑖 | are the number of nodes in 𝑁𝑢 and 𝑁𝑖 , and 𝑒
(0)
𝑢

and 𝑒 (0)
𝑖

are initialized in Equation 1. Furthermore, referring to the
recent graph learning-based method [22], we adjust the standard
graph Laplacian norm to the popularity-aware graph Laplacian
norm: 1

|𝑁𝑢1 |0.5 |𝑁𝑖 |0.5−𝛼
. This not only avoids the scale of embed-

dings increasing with the graph convolution operation, but also
incorporates the user’s sensitivity to popularity into the embedding
generation, and 𝛼 is a hyper-parameter.

In addition, the embeddings generated via each graph convolu-
tion layer contain peculiar semantic information. Thus, after the L
layer, we combine (i.e., weighted sum) the embeddings learned at
each layer as the final embedding representation of the nodes:

𝑒𝑏𝑎𝑠𝑒𝑢1 =
1

𝐿 + 1

𝐿∑︁
𝑙=0

𝑒
(𝑙 )
𝑢1 . (4)
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Figure 2: Illustration of the proposed MCLN. The feature encoder denotes pre-trained networks for visual and textual feature
extraction (see Subsection 3.2), 𝐿 is the max number of graph convolution layers, and 𝑀 is the max number of multimodal
counterfactual learning layers.

𝑒𝑏𝑎𝑠𝑒𝑖1
=

1
𝐿 + 1

𝐿∑︁
𝑙=0

𝑒
(𝑙 )
𝑖1
. (5)

3.2 Sample Pair Selection and Feature
Embedding

In this subsection, we first select a set of sample pairs (user-interacted
and user-uninteracted samples) from multimedia datasets for sub-
sequent multimodal preference modeling. The user-interacted sam-
ples are items with which the user has historically interacted. There
is a small portion of user preference-irrelevant representations in
the multimodal content of user-interacted items, which may have a
spurious correlation with user preferences. The user-uninteracted
samples are selected from the set of items with which the user has
not interacted. The multimodal content of user-uninteracted items
can identify and remove preference-irrelevant representations in
the multimodal content of user-interacted items. We exploit such
samples to purify the representation of user preference-relevant
multimodal content. Furthermore, the selection strategy of the user-
uninteracted sample is random in this work.

Then, we construct feature encoders to extract the visual and
textual feature embeddings of the sample pairs (𝑖 and 𝑖∗), where the
feature encoders represent pre-trained deep networks (e.g., VGG16
[33], Sentence2Vec [1]). Specifically, we feed the visual image of
sample 𝑖 into the pre-trained network to obtain deep features 𝑓𝑣 ,
where the 𝑓𝑣 dimension is 4,096. After that, we linearly transform
𝑓𝑣 into low-dimensional features 𝑒𝑣 by employing an embedding
matrix,𝑊𝑣 ∈ R4096×𝑑 . Therefore, the visual feature embedding
of 𝑖 is 𝑒𝑣 . Similarly, we feed the textual description of 𝑖 into the
pre-trained network to obtain deep features 𝑓𝑡 , where the 𝑓𝑡 di-
mension is 300. We also linearly transform 𝑓𝑡 into low-dimensional

features 𝑒𝑡 by using an embedding matrix,𝑊𝑡 ∈ R300×𝑑 . Thus, the
textual feature embedding of 𝑖 is 𝑒𝑡 . Moreover, we consider the
ID embedding after graph convolution of 𝑖 as a modality feature.
This allows incorporating high-order collaborative signals from
the user-item interaction graph into the representation learning
of the multimodal content of items. We conduct experiments in
Subsection 4.3.1 to verify its validity.

Subsequently, we combine the individual modality features (ID
after graph convolution, visual, and textual) of 𝑖 and 𝑖∗:

𝑋𝑖 = {𝑒𝑏𝑎𝑠𝑒𝑖 , 𝑒𝑣, 𝑒𝑡 }; 𝑋𝑖∗ = {𝑒𝑏𝑎𝑠𝑒𝑖∗ , 𝑒𝑣∗ , 𝑒𝑡∗ }, (6)

where 𝑒𝑏𝑎𝑠𝑒
𝑖

and 𝑒𝑏𝑎𝑠𝑒
𝑖∗ are the final ID embeddings of 𝑖 and 𝑖∗ in

the basic recommendation framework, i.e., Equation 5, and 𝑋𝑖 ∈
R𝑑𝑥 , 𝑋𝑖∗ ∈ R𝑑𝑥 , 𝑑𝑥 = 3 × 𝑑 .

3.3 Causal Difference Learning
In this subsection, we first adopt a causal graph between MMRec
and multimodal content to map recommendation tasks to a causal
world and analyze MMRec process from a causal view, thereby
obtaining causal difference calculation. Then, we design the multi-
modal counterfactual learning layer based on causal difference cal-
culation for guiding the model to leverage the multimodal content
representations of user-uninteracted items to identify and eliminate
preference-irrelevant representations in the multimodal content of
user-interacted items. This can further purify the representation of
user preference-relevant multimodal content.

3.3.1 Counterfactual Learning on Causal Graph. We utilize
causal graph theory to analyze MMRec process from a causal per-
spective and obtain causal difference with the help of intervention
and counterfactual inference.
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Causal Graph Theory. The causal graph is a directed acyclic
graph, G𝑐𝑎𝑢𝑠𝑎𝑙 = {V, E}, whereV stands for the set of variables
(nodes) and E denotes the causal relations between variables (edges).
In the causal graph, capital letters (e.g., U ) and lowercase letters
(e.g., u) represent variables and their observations, respectively.
We use a multimodal causal graph to describe the causal relations
among variables, as shown in Figure 3(a). In this causal graph, there
are four node variables: I (multimodal content of user-interacted
item), A (preference distribution on multimodal content of user-
interacted item), U (user), and Y (prediction score). The causal
paths of interest are as follows:
• Edge I → A represents the preference distribution calculated by
the recommendation model based on the multimodal content of
user-interacted items.

• Edges {U, I} → Y indicate traditional MMRec process and the
prediction score represents the user’s preference for a given item.

• Edges {U, I,A} → Y denote user preferences for different dimen-
sional features on the multimodal content of interacted items,
thus indicating the user’s interest in a more fine-grained way.
In Figure 3(a), the prediction score Y can be calculated from the

values of its ancestor nodes (U, I, and A) as follows:
𝑌𝑢,𝑖,𝑎 = 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐴 = 𝑎), (7)

where the structural formula 𝑓𝑌 (·) corresponds to themainmodules
of the recommendation model, i.e., the inner product function.
Counterfactual Calculation. After obtaining the multimodal
causal graph, we can analyze the causal relationships by manipulat-
ing the values of variables and seeing their effects. This operation
is known as an intervention in causal inference [26, 30, 52]. The
intervention is done by truncating all incoming edges of variable
and assigning a specific value, such that the intervened variable is
immune to the effects of its parent variable.

To apply the intervention operation to the multimodal causal
graph, we imagine a counterfactual world by drawing on coun-
terfactual thinking in causal inference, as shown in Figure 3(b).
In this counterfactual world, the variable 𝑰 ∗ is the multimodal
content of user-uninteracted item. The variable 𝑨∗ is the prefer-
ence distribution on multimodal content of user-uninteracted item,
which is learned from the variable 𝐼∗ (multimodal content of user-
uninteracted item). Therefore, 𝐴∗ is independent of the current
variable I (multimodal content of user-interacted item) and would
be immune from the effect of the current variable I. In Figure 3(b),
the prediction score is calculated as follows:

𝑌𝑢,𝑖,𝑎∗ = 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐴∗ = 𝑎∗) . (8)
Inspired by prior work [27, 35, 44], the difference value between

the real world and counterfactual world is the actual effect of the
preference distribution on multimodal content for the prediction
score as follows:

𝑌𝑒 𝑓 𝑓 𝑒𝑐𝑡 = 𝑌𝑢,𝑖,𝑎 − 𝑌𝑢,𝑖,𝑎∗ . (9)
Thus, we regard the learning of such difference values as causal

difference calculation. This can lead themodel to use themultimodal
content representations of user-uninteracted items to mitigate the
side effect of spurious correlations (user preference-irrelevant parts)
in the multimodal content representations of user-interacted items.
3.3.2 Multimodal Counterfactual Learning Layer. After ana-
lyzing the multimodal causal graph in Subsection 3.3.1 to obtain

Comparing

(a) Real world (b) Counterfactual world

: User: Multimodal content of user-interacted item

: Multimodal content of user-uninteracted item
: Preference distribution on multimodal content of user-interacted item

: Preference distribution on multimodal content of user-uninteracted item

: Prediction score

Figure 3: Comparison between real world and counterfactual
world multimodal causal graphs in recommender systems.

the causal difference calculation, next, we design the multimodal
counterfactual learning layer, which includes the counterfactual
learning layer and the feed-forward network. The counterfactual
learning layer first calculates the preference distributions on mul-
timodal content of user-interacted and user-uninteracted items.
Then, the difference values between the two preference distribu-
tions guided by causal difference calculation are used to purify the
representation of user preference-relevant multimodal content. The
feed-forward network is used to enhance the model fitting ability.
Counterfactual Learning Layer. First, according to the feature
embeddings obtained in Subsection 3.2, we exploit the combined
feature embeddings 𝑋𝑖 and 𝑋𝑖∗ in Equation 6 as the input of the
counterfactual learning layer.

Then, we calculate the queries, keys, and values of input embed-
ding 𝑋𝑖 via the transformation matrix as follows:

𝑄𝑖 = 𝑋𝑖 ·𝑊𝑄𝑖
; 𝐾𝑖 = 𝑋𝑖 ·𝑊𝐾𝑖

; 𝑉𝑖 = 𝑋𝑖 ·𝑊𝑉𝑖 , (10)

where𝑊𝑄𝑖
∈ R𝑑𝑥×𝑑𝑥 ,𝑊𝐾𝑖

∈ R𝑑𝑥×𝑑𝑥 , and𝑊𝑉𝑖 ∈ R𝑑𝑥×𝑑𝑥 ; these
transformationmatrices can be trained,𝑄𝑖 ,𝐾𝑖 , and𝑉𝑖 are essentially
linear transformations of the input embedding 𝑋𝑖 .

We also calculate the queries and keys of input embedding 𝑋𝑖∗
as follows:

𝑄𝑖∗ = 𝑋𝑖∗ ·𝑊𝑄𝑖∗ ; 𝐾𝑖∗ = 𝑋𝑖∗ ·𝑊𝐾𝑖∗ , (11)

where𝑊𝑄𝑖∗ ∈ R𝑑𝑥×𝑑𝑥 , and𝑊𝐾𝑖∗ ∈ R𝑑𝑥×𝑑𝑥 ; these transformation
matrices can be trained.

Next, we determine the preference distribution of the values by
calculating the similarity between the queries and keys. Specifically,
we first obtain the scores of each position using the dot product
between the queries and keys, then the preference distributions on
multimodal content of 𝑖 and 𝑖∗ are calculated by the softmax layer.

𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝑖 · (𝐾𝑖 )𝑇√

𝑑𝑥

)
, (12)

𝐴∗ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄𝑖∗ · (𝐾𝑖∗ )𝑇√

𝑑𝑥

)
, (13)

where the role of
√
𝑑𝑥 is to make the gradient values remain stable

during the training process and A and 𝐴∗ correspond to the pref-
erence distributions on multimodal content learned from the real
world and counterfactual world in Figure 3, respectively.

Subsequently, based on the causal difference calculation in Sub-
section 3.3.1, we subtract A and 𝐴∗, then multiply the difference
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with the values 𝑉𝑖 to obtain the output of the counterfactual learn-
ing layer as follows:

𝑒𝑐𝑙 = (𝐴 −𝐴∗) ·𝑉𝑖 . (14)
Feed-Forward Network. After obtaining the output embedding
𝑒𝑐𝑙 of the counterfactual learning layer, we process 𝑒𝑐𝑙 utilizing
residual connection and layer normalization. This can improve the
problem of gradient disappearance in the deep model and speed up
the model convergence as follows:

𝑒𝑙𝑛 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑒𝑐𝑙 + 𝑋𝑖 ), (15)
where 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(·) is the layer normalization operation.

Later, we feed the embedding 𝑒𝑙𝑛 into the feed-forward network,
which includes two linear layers and an activation function. Besides,
we also process the output embedding 𝑒𝑓 𝑓 𝑛 of the feed-forward
network by using residual connection and layer normalization.
Thereafter, we use the processed embedding as the output embed-
ding 𝑒𝑣,𝑡 of the multimodal counterfactual learning layer as follows:

𝑒𝑓 𝑓 𝑛 =𝑚𝑎𝑥 (0,𝑊1𝑒𝑙𝑛 + 𝑏1)𝑊2 + 𝑏2, (16)

𝑒𝑣,𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑒𝑓 𝑓 𝑛 + 𝑒𝑙𝑛), (17)

where𝑊1 and𝑊2 are the trainable weights of the first and second
linear layer, 𝑏1 and 𝑏2 are the respective bias terms, and𝑚𝑎𝑥 (0, 𝑥)
is the expression of the activation function ReLU.

Finally, to improve the representation learning ability of the
model, we stack this multimodal counterfactual learning layer as
M layers. The output embedding 𝑒 (𝑀 )

𝑣,𝑡 of the M-th layer is used as
the inter-modality embedding of item 𝑖 as follows:

𝑒
(𝑀 )
𝑣,𝑡 = 𝑀𝐶𝐿(𝑒 (𝑀−1)

𝑣,𝑡 ), (18)
where𝑀𝐶𝐿(·) is the multimodal counterfactual learning layer. Note
that 𝑒 (0)𝑣,𝑡 is equal to 𝑒𝑣,𝑡 in Equation 17.

3.4 Multimodal Fusion and Score Prediction
3.4.1 Multimodal Fusion. In multimodal preference modeling,
we consider the intra- and inter-modality feature embedding of
item 𝑖 . The intra-modality feature embeddings 𝑒𝑣 and 𝑒𝑡 of item 𝑖

are obtained based on the feature encoder in Subsection 3.2. The
inter-modality feature embedding 𝑒 (𝑀 )

𝑣,𝑡 of item 𝑖 is learned accord-
ing to the multimodal counterfactual learning layer in Subsection
3.3. Afterward, we sum the intra- and inter-modality feature em-
beddings of item 𝑖 as the final embedding of item 𝑖 in the causal
difference learning part.

𝑒𝑖 = 𝑒𝑣 + 𝑒𝑡 + 𝑒 (𝑀 )
𝑣,𝑡 . (19)

3.4.2 Prediction Function. First, according to Equations 4 and
5, we can utilize an inner product operation to calculate the predic-
tion score between user 𝑢 and item 𝑖 in the basic recommendation
framework as follows:

𝑦𝑏𝑎𝑠𝑒𝑢,𝑖 = (𝑒𝑏𝑎𝑠𝑒𝑢 )𝑇 · 𝑒𝑏𝑎𝑠𝑒𝑖 . (20)
Then, based on Equations 4 and 19, we can employ an inner

product operation to calculate the prediction score between user 𝑢
and item 𝑖 in the causal difference learning part as follows:

𝑦𝑢,𝑖 = (𝑒𝑏𝑎𝑠𝑒𝑢 )𝑇 · 𝑒𝑖 . (21)
Finally, to simultaneously learn the user-item collaborative sig-

nals and multimodal information of the item, we sum Equations 20

and 21 as the final prediction score as follows:

𝑦𝑢,𝑖 = 𝑦
𝑏𝑎𝑠𝑒
𝑢,𝑖 + _𝑚 · 𝑦𝑢,𝑖 , (22)

where _𝑚 is used to control the contribution of multimodal feature
embedding to user preference prediction.

3.5 Model Optimization
To optimize MCLN, we construct the objective functions of these
two prediction scores and design a multi-task strategy to combine
these two objectives. We adopt BPR loss [31] as the basic objec-
tive function, which assumes that users prefer interacted items to
unobserved ones.

To be specific, we first developL𝑏𝑎𝑠𝑒 to ensure sufficient learning
of collaborative signals to better model user preferences in the basic
recommendation framework. Then, we propose L𝑚 to facilitate
the learning of multimodal information to better model multimodal
user preferences. They are calculated as follows:

L𝑏𝑎𝑠𝑒 =
∑︁

(𝑢,𝑖, 𝑗 ) ∈O
−𝑙𝑛𝜎 (𝑦𝑏𝑎𝑠𝑒𝑢,𝑖 − 𝑦𝑏𝑎𝑠𝑒𝑢,𝑗 ) + _ · ∥H1∥22 , (23)

L𝑚 =
∑︁

(𝑢,𝑖, 𝑗 ) ∈O
−𝑙𝑛𝜎 (𝑦𝑢,𝑖 − 𝑦𝑢,𝑗 ) + _ · ∥H2∥22 , (24)

where O = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ R𝑢 , (𝑢, 𝑗) ∉ R𝑢 } are the training data,
R𝑢 represents the set of items with which user u has historically
interacted, and 𝜎 (·) is the expression of the sigmoid function. The
𝐿2 regularization coefficient _ is a hyper-parameter, H1 denotes
the ID embedding matrix E in the basic recommendation frame-
work (Subsection 3.1), and H2 represent the feature matrix (𝑒𝑣 , 𝑒𝑡 ,
and 𝑒 (𝑀 )

𝑣,𝑡 ) in the feature embedding (Subsection 3.2) and causal
difference learning (Subsection 3.3).

For simultaneous training, multi-task learning is formulated by
combining two losses with an addition operation. We formulate the
objective function L to jointly optimize L𝑏𝑎𝑠𝑒 and L𝑚 as follows:

L = L𝑏𝑎𝑠𝑒 + L𝑚 . (25)

Table 1: Statistics of the three datasets. Note that # V and # T
denote the length of visual and textual features, respectively.

Dataset # User # Item # Interaction Density # V # T

Beauty 15,576 8,678 139,318 0.00103 4,096 300
Art 25,165 9,324 201,427 0.00086 4,096 300

Taobao 12,539 8,735 83,648 0.00076 4,096 -

4 EXPERIMENTS
In this section, we conduct abundant experiments to evaluateMCLN.
We aim to answer the following three research questions:
• RQ1: How does our proposed MCLN perform compared with
the state-of-the-art baselines?

• RQ2: How do the key components (multimodal features, coun-
terfactual learning layer, intra- and inter-modality features, etc.)
of MCLN affect performance?

• RQ3: How do the distinct settings of MCLN affect performance?

4.1 Experimental Settings
4.1.1 Datasets. As our work focuses on MMRec, we conduct ex-
periments on three public datasets with different densities: Beauty,
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Table 2: Overall performance comparison. H is short for HR and N is short for NDCG.

Models Beauty Art Taobao
H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

BPRMF [18] 0.4274 0.3343 0.5173 0.3634 0.6333 0.5597 0.7052 0.5829 0.3215 0.2465 0.4049 0.2733
SVD++ [17] 0.4584 0.3592 0.5520 0.3895 0.6530 0.5627 0.7425 0.5916 0.3374 0.2523 0.4293 0.2819
NGCF [43] 0.4853 0.3776 0.5820 0.4089 0.6742 0.5882 0.7541 0.6141 0.3575 0.2658 0.4593 0.2986
LightGCN [12] 0.5229 0.3909 0.6385 0.4285 0.6938 0.5996 0.7710 0.6246 0.3886 0.2896 0.4961 0.3243
VBPR [11] 0.4722 0.3665 0.5670 0.3973 0.6699 0.5830 0.7464 0.6078 0.3464 0.2639 0.4364 0.2928
MMGCN [46] 0.4934 0.3714 0.6067 0.4081 0.6769 0.5643 0.7702 0.5945 0.3649 0.2709 0.4695 0.3047
MGAT [36] 0.5010 0.3781 0.6152 0.4152 0.6825 0.5784 0.7699 0.6067 0.3783 0.2820 0.4882 0.3175
InvRL [6] 0.5130 0.3955 0.6097 0.4268 0.6965 0.5986 0.7748 0.6237 0.3913 0.2926 0.4897 0.3244
DMRL [19] 0.5230 0.4075 0.6215 0.4396 0.6972 0.6008 0.7775 0.6272 0.3757 0.2876 0.4594 0.3146
MCLN 0.5636 0.4368 0.6689 0.4710 0.7168 0.6123 0.7973 0.6384 0.4067 0.3060 0.5105 0.3393
%Imp. 7.76% 7.19% 4.76% 7.14% 2.81% 1.91% 2.55% 1.79% 3.94% 4.58% 2.90% 4.59%

Arts_crafts_and_Sewing (short for Art)1, and Taobao2. Beauty
and Art are real datasets from Amazon.com [25], and both contain
images, titles, and reviews. Taobao is a real dataset published in
the Tianchi competition, which provides visual content only. We
adopt the 5-core setting to ensure the quality of these datasets,
which means that only users and items with at least 5 interactions
are retained. Table 1 shows the statistics of the three experimental
datasets. Following the broadly employed setting [11, 14, 48], we
utilize the leave-one-out method [31] for evaluation.

4.1.2 Evaluation Metrics. To evaluate the model performance,
we choose two widely employed metrics [13, 14, 20], Hit Ratio (HR)
and Normalized Discounted Cumulative Gain (NDCG). Specifically,
HR indicates the average probability of the user’s favorite items
appearing in the top-k recommendation list. In contrast, NDCG
concerns more about the position of the recommended items in
the list, and its higher score suggests a more forward position. We
report the average HR@k and NDCG@k for all users in the test set,
where k is the length of the recommendation list.

4.1.3 Baselines. To demonstrate the effectiveness of MCLN, we
compare MCLN with existing recommendation models, including
traditional models (BPRMF, SVD++), GCN-based models (NGCF,
LightGCN), and multimedia-based models (VBPR, MMGCN, MGAT,
InvRL, DMRL). We briefly introduce those models as follows:
• BPRMF [18]: This is a classical collaborative filtering model
optimized using BPR loss. It maps user and item representations
as latent vectors based on user-item direct interactions.

• SVD++ [17]: This model incorporates the information of the
user’s historically interacted neighbors into the user embedding.

• NGCF [43]: This model utilizes nonlinear GCN to perform em-
bedding propagation on the user-item interaction graph and
produces the final embedding of the nodes by concatenating the
embedding learned from all graph convolution layers.

• LightGCN [12]: This model exploits a concise linear GCN for em-
bedding generation and accumulates the embeddings generated
at each graph convolution layer as the final node representation.

• VBPR [11]: This model employs pre-trained convolution neural
networks to extract visual features of the items and integrate
them into the item embeddings.

1http://deepyeti.ucsd.edu/jianmo/amazon/index.html
2https://tianchi.aliyun.com/competition/entrance/231506/information

• MMGCN [46]: This model applies GCNs for embedding prop-
agation on parallel interaction graphs with different modality
data to capture user preferences on different modalities.

• MGAT [36]: This model weights information propagation in mul-
timodal interaction graphs by constructing attention networks,
thus modeling fine-grained multimodal user preferences.

• InvRL [6]: This model applies heterogeneous environments to
denote the spurious correlations from themultimedia content and
learns invariant representations across environments to mitigate
their effect.

• DMRL [19]: This model uses a disentangled representation tech-
nique to ensure that the features of different disentangled factors
are independent in each modality and designs multimodal atten-
tion mechanisms to obtain user preferences for each factor.

4.1.4 Hyper-parameter Settings. For all models, we fix the em-
bedding size and batch size to 64 and 2,048, respectively. The learn-
ing rate is adjusted in {10−4, 10−3, 10−2, 10−1, 1}, and the coefficient
of 𝐿2 regulation is searched in {0, 10−5, 10−4, 10−3, 10−2, 10−1}. For
all GCN-based models, the number of graph convolution layers is
adjusted in {1, 2, 3, 4, 5, 6}. In our MCLN, the number of multimodal
counterfactual learning layers is tuned in {1, 2, 3, 4, 5}. Furthermore,
we apply the Xavier initializer [8] to initialize the embeddings and
weight transformation matrices for all models. We adopt the mini-
batch Adam optimizer [15] to minimize the objective function.

4.2 Overall Comparison (RQ1)
In this subsection, we perform a detailed comparison of MCLN with
all baselines. As shown in Table 2, we summarize the experimental
results {HR, NDCG}@{5, 10} of all models on the three datasets. We
elaborate our exhaustive observations as follows.

First, in all evaluation metrics of {HR, NDCG}@{5, 10}, our MCLN
yields outstanding performance on all datasets. Without any doubt,
these results fully demonstrate the rationality and superiority of
MCLN. In detail, compared to the strongest performance of the
baselines, MCLN achieves an average improvement of 6.71%, 2.27%,
and 4.00% on the three datasets, respectively. This result may be
due to the multimodal counterfactual learning layer devised in
MCLN can guide the model to employ the multimodal content
representations of user-uninteracted items to mitigate the side
effect of user preference-irrelevant parts in the multimodal content
of user-interacted items. That is, the multimodal preference cues
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captured by MCLN are superior to those captured by the baselines.
Note that the performance gain of MCLN on the Beauty dataset is
better than the Art and Taobao datasets. A possible reason is that
the density of the Beauty dataset is higher than the remaining two
datasets (cf. Table 1).

Second, the multimedia-based baselines (VBPR, MMGCN, MGAT,
InvRL, DMRL) are greatly superior to the traditionalmodels (BPRMF,
SVD++). This demonstrates the effectiveness of integrating multi-
modal information into embedding generation to assist in modeling
user preferences. Among all multimedia-based baselines, DMRL
performs best on the Beauty and Art datasets, which can capture
users’ attention to different modalities on each factor in user pref-
erence modeling. However, the performance of DMRL is weaker on
the Taobao dataset, probably because the Taobao dataset is sparse
and DMRL does not use GCN to capture high-order collaborative
signals. The results of the gap between our MCLN and multimedia-
based baselines suggest that multimodal content representations of
user-uninteracted items can be used to purify the representations
of user preference-relevant multimodal content.

Third, the GCN-based baselines (NGCF, LightGCN) are signif-
icantly stronger than BPRMF and SVD++ regarding these three
datasets, which verifies the effectiveness of capturing high-order
collaborative signals to enhance the expressiveness of the embed-
ding. It also further illustrates the importance of using GCN to
aggregate neighbor information for representation learning. In all
cases, LightGCN outperforms NGCF, MMGCN, and MGAT. A pos-
sible reason is that the concise linear GCN is more suitable for
capturing high-order collaborative signals, thereby improving the
quality of representation learning. Therefore, we also utilize the
linear GCN as the basic recommendation framework of MCLN.

Table 3: Ablation study with key components.

Models Beauty Art Taobao
H@5 N@5 H@5 N@5 H@5 N@5

(1) Base 0.5293 0.4069 0.7016 0.5932 0.3933 0.2950
(2) Base w/ V 0.5313 0.4087 0.7028 0.5963 0.3994 0.2993
(3) Base w/ V&CL 0.5384 0.4108 0.7046 0.5980 0.4048 0.3034
(4) Base w/ V&ID&CL 0.5386 0.4116 0.7060 0.5994 - -
(5) Base w/ T 0.5462 0.4228 0.7105 0.6036 - -
(6) Base w/ T&CL 0.5582 0.4271 0.7151 0.6054 - -
(7) Base w/ T&ID&CL 0.5589 0.4309 0.7156 0.6060 - -
(8) Base w/ V&T 0.5492 0.4230 0.7110 0.6055 - -
(9) Base w/ V&T&CL 0.5620 0.4362 0.7164 0.6116 - -
(10) MCLN (Ours) 0.5636 0.4368 0.7168 0.6123 0.4067 0.3060

4.3 Ablation Study (RQ2)
4.3.1 Effect of Key Components. We first investigate the effec-
tiveness of different components of our MCLN. In particular, we
set up the following variants of MCLN:
• Base: This variant uses only the basic recommendation frame-
work in MCLN to predict user preferences;

• Base w/ V: This variant builds on Base and employs visual fea-
tures to predict users’ multimodal preferences;

• Base w/ V&CL: This variant builds on Base and uses visual
features as the input of the counterfactual learning layer;

• Base w/ V&ID&CL: This variant builds on Base and combines
visual features and ID feature embedding after item graph
convolution as the input of the counterfactual learning layer;

• Base w/ T: This variant builds on Base and utilizes textual fea-
tures to predict users’ multimodal preferences;

• Base w/ T&CL: This variant builds on Base and uses textual
features as the input of the counterfactual learning layer;

• Base w/ T&ID&CL: This variant builds on Base and combines
textual features and ID feature embedding after item graph con-
volution as the input of the counterfactual learning layer;

• Base w/ V&T: This variant builds on Base and uses visual and
textual features to jointly predict users’ multimodal preferences;

• Base w/ V&T&CL: This variant builds on Base and combines
visual and textual features as the input of the counterfactual
learning layer.

Table 3 records the performance {HR, NDCG}@5 of these variants
on the three datasets, leading to the following observations.

First, among all variants of MCLN in Table 3, the worst perfor-
mance occurs with Base, which only captures the high-order collab-
orative signals from the user-item interaction graph. In particular,
the performance degraded by an average of 6.92% on Beauty, 2.70%
on Art, and 3.57% on Taobao. This illustrates the importance of si-
multaneously utilizing the multimodal features and counterfactual
learning layer for user preference modeling. It also demonstrates
the effectiveness of leveraging multimodal content to assist with
recommendation tasks.

Second, in all datasets, Base w/ V&CL outperforms Base w/
V; Base w/ T&CL outperforms Base w/ T; and Base w/ V&T&CL
outperforms Base w/ V&T. These results demonstrate the beneficial
impact of the counterfactual learning layer on model performance.
This also confirms our claim that the counterfactual learning layer
can lead themodel to utilize themultimodal content representations
of user-uninteracted items to alleviate the side effect of spurious
correlations (user preference-irrelevant parts) in the multimodal
content representations of user-interacted items. Moreover, we find
that the counterfactual learning layer has greater performance gain
on combined multimodal features than single-modal features. This
may be because different modalities in the counterfactual learning
layer have different gains for modeling user preferences. Thus,
using multiple modal features simultaneously in the counterfactual
learning layer is useful to achieve better recommendations.

Third, in the Beauty and Art datasets, Base w/ T outperforms
Base w/ V, which indicates that the different modal features have
remarkably different contributions to user preference modeling. In
these two datasets, the textual features of items have a more criti-
cal effect on user preference modeling. Base w/ V&T outperforms
Base w/ T. This result confirms the importance of multimodal in-
formation captured from multiple modal features of items for user
preference modeling.

Fourth, in the Beauty and Art datasets, we consider the ID fea-
ture embedding after item graph convolution during the multi-
modal feature combination process for Base w/ V&ID&CL, Base
w/ T&ID&CL, and MCLN (Ours). This allows incorporating high-
order collaborative signals from the user-item interaction graph
into the multimodal preference learning process, providing further
performance gains on top of Base w/ V&CL, Base w/ T&CL, and
Base w/ V&T&CL. Note that in the Taobao dataset, MCLN (Ours)
is equal to Base w/ V&ID&CL due to the lack of textual features.
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4.3.2 Effect of Multimodal Fusion. We then investigate the ef-
fect of intra- and inter-modality feature fusion strategies on the
performance of our MCLN. Specifically, we set up the following
variants of MCLN: (a)MCLN w/o intra-modality, which removes
the intra-modality feature from the multimodal fusion of MCLN,
i.e., we remove 𝑒𝑣 and 𝑒𝑡 from Equation 19; and (b) MCLN w/o
inter-modality, which removes the inter-modality feature from
the multimodal fusion of MCLN, i.e., 𝑒 (𝑀 )

𝑣,𝑡 is removed from Equa-
tion 19. Table 4 records the performance of these variants on the
Beauty and Art datasets. MCLN w/o inter-modality outperforms
MCLN w/o intra-modality in all cases, which indicates that simply
utilizing the inter-modality feature of items is insufficient for min-
ing multimodal preference cues. Moreover, the combined MCLN
is significantly superior to MCLN w/o intra-modality and MCLN
w/o inter-modality. This result illustrates the effectiveness of strate-
gies that fuse intra- and inter-modality features of items to extract
multimodal preference cues.

Table 4: Ablation studies of different modality fusion strate-
gies on Beauty and Art datasets.

Models Beauty Art
H@5 N@5 H@5 N@5

MCLN w/o intra-modality 0.5379 0.4128 0.7067 0.5939
MCLN w/o inter-modality 0.5492 0.4230 0.7110 0.6055
(Intra&Inter)-modality (Ours) 0.5636 0.4368 0.7168 0.6123

4.4 Study of MCLN (RQ3)
In this subsection, we conduct experiments to investigate the effect
of pivotal hyper-parameters in MCLN on model performance. We
first explore the effect of the graph convolutional layer numbers.We
then study how the number of multimodal counterfactual learning
layers affects model performance.

4.4.1 Effect of Graph Convolution Layer Numbers. To ana-
lyze the impact of graph convolution layer numbers, we adjust the
layer numbers in {1,2,3,4,5,6} and show the results in Figure 4. Ac-
cording to Figure 4, we observe that the model performance contin-
uously promotes with the increase of the layer numbers. However,
similar to many GCN-based recommender models [12, 43], stacking
too many layers introduces the problem of over-smoothing, which
leads to performance degradation. Therefore, model performance
shows a peak as the layer number increases. In the Beauty, Art, and
Taobao datasets, the optimal number of graph convolution layers
for MCLN are 4, 5, and 5, respectively.

4.4.2 Effect of Multimodal Counterfactual Learning Layer
Numbers. To investigate the impact of the number of multimodal
counterfactual learning layers, we search the layer numbers in
{1,2,3,4,5}. Table 5 summarizes the experimental result. In Table
5, we find that the model performance shows a peak change as
the number of layers increases. We attribute this to the fact that
exploiting too many multimodal counterfactual learning layers in-
terferes with the representation learning process. In the Beauty,
Art, and Taobao datasets, the optimal number of multimodal coun-
terfactual learning layers for MCLN are 2, 2, and 4, respectively.
Besides, MCLN with different multimodal counterfactual learning
layers consistently outperforms the baselines on the three datasets.

Figure 4: Effect of graph convolution layer numbers.

This result further validates the effectiveness of the multimodal
counterfactual learning layer in MCLN.

Table 5: Effect of multimodal counterfactual learning layer
numbers.

Layers Beauty Art Taobao
H@5 N@5 H@5 N@5 H@5 N@5

1 0.5602 0.4302 0.7145 0.6114 0.4012 0.3008
2 0.5636 0.4368 0.7168 0.6123 0.4018 0.3021
3 0.5629 0.4361 0.7138 0.6081 0.4044 0.3046
4 0.5616 0.4316 0.7126 0.6066 0.4067 0.3060
5 0.5600 0.4280 0.7115 0.6006 0.4036 0.3041

5 CONCLUSION AND FUTUREWORK
In this work, we propose a novel MMRec model, MCLN, which com-
bines the basic recommendation framework with the multimodal
counterfactual learning layer for purifying the representation of
user preference-relevant multimodal content to better match the
user’s interests. We capture sufficient collaborative signals on the
user-item interaction graph with only historical interaction data,
and use pre-trained deep networks to extract multimodal features
of the sample pairs (user-interacted and user-uninteracted items).
The model utilizes causal theory to guide the multimodal counter-
factual learning layer for modeling the causal difference between
the multimodal content of user-interacted and user-uninteracted
items, thereby eliminating preference-irrelevant representations in
the multimodal content of user-interacted items, which may have a
spurious correlation with user preferences. Extensive experiments
on three public datasets justify the effectiveness of MCLN and its
components. In the future, we would attempt to incorporate rich
relationships among items into MMRec to enhance the quality of
representation learning. Besides, we will consider how to use mul-
timedia data to improve the interpretability of recommendations.
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